
Assignment 3.
Developing data products using data analytics and embedded SQL

This is the final assignment for this course, where you combine skills learned in Assignments 1 and 2 to

produce a viable data product: CEA Course Recommender (CR). Users interact with the database

through your application. This project is expected to improve your SQL programming skills and the

ability to ask and answer questions about data through a comprehensive User Interface.

You can develop this application in a programming language of your choice1 using either a local SQLite

database, or a PostgreSQL database on the CDF server. You can even use any other DBMS, including

MySQL and Oracle, however you will need to install the system by yourself and make sure that you are

able to run your program during the final project demo.

Program specifications.

1. Introduction
The goal of this program is to use data about courses, topics and skills - collected in the CEA database -

to produce course recommendations, similar to movie and music recommendations in such applications

as Netflix or Pandora.

The idea of an automatic recommender is quite simple: find a group of users most similar to an active

user and ask what did they rank highly. Use these highly ranked items as recommendations for an active

user. If you want to explore the topic of recommenders in more details, you can read a book chapter

excerpt provided on the assignment page.

When a new active user logs in, your application should collect data about this new user in order to find

his/her nearest neighbors – students most similar to him/her. In addition, you should verify what

courses this active user has already taken - in order to exclude them from your recommendations.

Once you collect all the required information, you present the user with the list of recommended

courses, ranked according to the user-specified criteria.

2. Database
The database instance represents a snapshot of the CEA database - so familiar to you: all the included

entities, attributes and relationships have the same meaning as in Assignment 1. SQL scripts for

recreating an SQLite instance of this database are provided in cea_db.zip.

The database structure is summarized in the E/R diagram in Figure 1, and in the database schema below.

1 Those of you who want your JDBC score for Assignment 1 updated, develop a comprehensive version

using JDBC, and you will get the full mark for the JDBC part of Assignment 1.

Note that artificial integer IDs have been added to the week entities such as Course and Course Edition,

to make joins more efficient. Also the ternary relationships between student, course edition and skill

(topic) contain an additional attribute course id, to ensure that any combination of (skill, course) is valid:

foreign key constraints.

Relational schema:
Departments (dept_code, dept_name)
Courses (course_id, dept_code, course_number, course_name)
Course_editions (edition_id, course_id, year, semester, total_students, time_day)
Students (username, permission, age, gender, native_country)
Skills (skill_id, skill)
Topics (topic_id, topic)
Course_topics (topic_id, course_id)
Course_skills (skill_id, course_id)
Enrollments (username, edition_id, letter_grade, course_ranking, instr_ranking)
Skill_rankings (username, edition_id, course_id, skill_id, rank_before, rank_after)
Topic_interests (username, edition_id, course_id, topic_id, interest_before, interest_after)
Letter_grades (letter_grade, min_grade, max_grade, gpv)

3. Functionality
3.1. Initial user information

An active user logs in and if his2 user name is not found in the database, the initial demographic

information is collected and recorded into the Students table. Otherwise the existing information is

used.

3.2. Collecting user courses

The first step is to identify which courses this student has taken. This applies to both a new and a

returning user. The courses are not added to the existing database yet, but are recorded into an

appropriate data structure for the future use.

2 His, he, him is used in a gender-neutral sense throughout the text.

Figure 1. E/R diagram of the CEA database

3.3. Collecting user interests

Then the user needs to express his interest in the available topics. The topics are presented grouped by

departments, to make navigation and selection easier. The user does not have to rank all the available

topics.

3.4. Collecting user skills

Next the user accesses his level of different skills, which are also presented grouped by the

departments. Again, the user has the right to omit some skills.

3.5. Computing potential recommendations

The program then finds 15 users which are most similar to an active user by their demographic

characteristics, level of skills before the course, and topic interests before the course. It extracts all

courses which these top 15 users have ranked, except the ones which have been already taken by the

active user. Do not forget to exclude an active user himself from the set of his nearest neighbors.

3.6. Presenting recommendations based on the user-specified criteria

At this point the user is presented with the choice of how he wants his recommendations to be ranked.

 “Recommend courses with the best predicted grade”

The first choice is by the expected grade. For each course that program has identified as possible

recommendation, it computes an average grade, based on the numeric max_grade corresponding to

the letter grade, and converts it to the letter grade again. Then all the recommendations are sorted

by this average grade in descending order and 5 top are presented to the active user.

 “Recommend courses which promote my interests”

The second choice is based on the development of student interests in different topics. The program

will rank the potential candidate courses by an average increase in topic interest after the course,

taking into account only those topics that the user expressed some interest in.

 “Recommend courses which improve my skills”

The third choice is based on an average skill improvement after each course. Again, the courses with

the best skill improvement are presented as course recommendations. For both option 2 and option

3, the relevant improvements are summed up for each course before averaging them among all 15

nearest neighbors.

 “Recommend courses which make me happy” (with the best predicted evaluation score)

Finally, the user may select to see the recommended courses based on the best average course

satisfaction.

You do not have to apply additional weights to all the values computed above, however if you want

you may weigh each value by the inverse of the distance from an active user (see book examples for

details)

4. Data collection
After the user explored all his recommendations and before he exits, he is prompted to add his own

data to the CEA database. For each course he has already taken (recorded in step 3.2), the regular

questions such as grade, course rank and instructor rank are asked. The user may want to add new

topics and skills, and record skill improvements and topic interest dynamics. You may reuse your code

from Assignment 1 for this part. This step of the data collection should be optional for the user.

Minimum requirements for the user interface:

 Comprehensive interaction with the user by maintaining a dialog (text UI is OK)

 Preventing exposure to the internals of the database implementation

 Easy to use, intuitive interface

 Friendly and comprehensive error messages following an invalid data entry

 You program should not crash under any circumstances – after any user action

Marking scheme
Each piece of functionality is graded separately:

 Initial user information: 5 points

 Collecting user courses: 10 points

 Collecting user interests and skills: 15 points

 Computing potential recommendations: 25 points

 Recommending courses with the best predicted grade: 10 points

 Recommending courses which promote my interests: 10 points

 Recommending courses which improve my skills: 10 points

 Recommending courses with the best predicted evaluation score: 10 points

 Data collection: 30 points

 Overall UI: 10 points

 Quality of SQL queries and embedded SQL: 15 points.

150 points in total for 15% of the course grade.

Bonus points

This application relies on collective intelligence. The best solution for this type of applications is a web

application, where you can collect and analyze data from the large amount of users. Therefore, the

students who will develop the Course Recommender as a web application will be awarded 5 bonus

points towards the total course grade. A tutorial for embedding SQLite queries into PHP can be found

here. However, you are free to develop in any other language/framework such as NodeJS.

UPDATE: missing values for distance computation.

Here is the suggestion of how we treat the comparison with missing values (NULLs) when computing

distance between users.

If there is no entry for the skill level/topic interest of the active user, we set the distance across this

dimension to the maximum possible value: 5.

http://zetcode.com/db/sqlitephp/

If the value for one of the demographic characteristics is missing, we replace it by an average value for

this attribute across all the users in the database. This is a common technique for treating missing

values, which makes sense in this context. For example, if active user has age 35 and the average age for

all users is 24.5, the distance across the age dimension is 5.5. For the gender attribute, compute a

proportion of males among all users, suppose this proportion is 80%. Now if the active user is a male, the

distance across gender dimension is 0.2. If the active user is a female, the distance is 0.8. If the country is

missing, set the distance to a maximum of 1.

We need all to be on the same page in how we compute the distance, because it will be a correctness

test which all the programs should pass in order to get a full mark for this assignment. So if you have any

other doubts about the distance computation, please clarify it before your final submission.

Another note is about computing meaningful recommendations. You must force the active user to enter

at least 5 skills and 5 topics if he wants to get the recommendations. In case there is not enough data –

just notify the user and do not compute. In addition, if the distance between the active user and all 15

nearest neighbors is the same, it means that based on the data provided the program failed to

distinguish between similar and non-similar users and no recommendations should be issued in this case.

